Computational Modelling in Drug Discovery Application of Structure-Based Drug Design, Conformal Prediction and Evaluation of Virtual Screening

نویسندگان

  • MARTIN LINDH
  • Mounir Andaloussi
  • Lena M. Henriksson
  • Anna Wieckowska
  • Martin Lindh
  • Christofer Björkelid
  • Anna M. Larsson
  • Surisetti Suresh
  • Harini Iyer
  • Bachally R. Srinivasa
  • Terese Bergfors
  • Torsten Unge
  • Sherry L. Mowbray
  • Mats Larhed
چکیده

Lindh, M. 2017. Computational Modelling in Drug Discovery. Application of StructureBased Drug Design, Conformal Prediction and Evaluation of Virtual Screening. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 235. 47 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0049-8. Structure-based drug design and virtual screening are areas of computational medicinal chemistry that use 3D models of target proteins. It is important to develop better methods in this field with the aim of increasing the speed and quality of early stage drug discovery. The first part of this thesis focuses on the application of structure-based drug design in the search for inhibitors for the protein 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), one of the enzymes in the DOXP/MEP synthetic pathway. This pathway is found in many bacteria (such as Mycobacterium tuberculosis) and in the parasite Plasmodium falciparum. In order to evaluate and improve current virtual screening methods, a benchmarking data set was constructed using publically available high-throughput screening data. The exercise highlighted a number of problems with current data sets as well as with the use of publically available high-throughput screening data. We hope this work will help guide further development of well designed benchmarking data sets for virtual screening methods. Conformal prediction is a new method in the computer-aided drug design toolbox that gives the prediction range at a specified level of confidence for each compound. To demonstrate the versatility and applicability of this method we derived models of skin permeability using two different machine learning methods; random forest and support vector machines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017